Impact of the Vendor Lock-in Problem on
Testing as a Service (TaaS)

Ricardo Ramos de Oliveira
Rafael Messias Martins
Adenilso da Silva Simao

5th IEEE International Conference on Cloud Engineering
IC2E 2017

Ricardo Ramos de Oliveira

Summary

Bl Introduction

E Background

Kl The Lock-in Problem in TaaS

1 Development Guidelines and Test Architecture

EH cConclusions

Ricardo Ramos de Oliveira

Introduction

@00
1 - Introduction

1 - Introduction

G R oo

Linux

Operating systems

ChromeT1
Operail

SUN
WMacintosh

Multi-piatform testing

Computer

‘Samsung

P

|

Devices Mobile phones % NOKIA

|

ASUS ...

[Biackberry

L

MOTOROLA .

i

Test of Multiple Platforms (Client)

Ricardo Ramos de Oliveira

Introduction
oeo

1 - Introduction

Context

m In this context, Testing as a Service (TaaS) is defined as a
test tool offered as a service in the cloud for the verifica-
tion and validation of the functionalities of a web system
through the Internet;

m However, the lock-in problem imprisons the user in the plat-
form of a specific vendor or test service due to the difficult
migration from one TaaS provider to another;

m The vendor lock-in problem limits the use of those new tech-
nologies and prevents a widespread adoption of TaaS.

2

Ricardo Ramos de Oliveira

Introduction
ooe

1 - Introduction

Objectives:

El I|dentification of the impact of the lock-in problem on the
entire cloud testing process;

K Proposal of a solution to the lock-in problem in both writ-
ing and execution of tests through a test architecture that
abstracts TaaS providers;

3

Ricardo Ramos de Oliveira

Background
[leJele]e]

2 - Background and Related Work

2 - Background and Related Work

m Testing as a Service (TaaS)
m Vendor Lock-in Problem

m Portability and Interoperability

4

Ricardo Ramos de Oliveira

Background
(o] Jelele]

2 - Background and Related Work

Testing as a Service (TaaS)

Saag/'l'aaS\

C‘ (Software as (Testing as Develop
onsume a Service) a Service)
End Users / \
Provide s ? it Consume
/ e AN
—_— PaaS R
Frovids (Platform as a Service) Consume
Cloud Software Engineers
Providers (Developers or Testers)
X Support b4
Provide | Consume
Y s

laaS
(Infrastructure as a Service)

Figure: Example of interactions between actors and service models

5

Ricardo Ramos de Oliveira

Background
[e]e] le]e]

2 - Background and Related Work

Lock-in Problem

m One of the main problems associated with software devel-
opment and testing in a cloud environment is known as
vendor lock-in;

m It results from the lack of portability and interoperability
among providers and causes the imprisonment of users on
a particular cloud vendor due to proprietary technologies.

+ .
Software as a Service
Platform as a Service
Infrastructure as a Service +
Level of vendor Level of flexibility
lock-in

6

Ricardo Ramos de Oliveira

Background
00080

2 - Background and Related Work

Portability and Interoperability

m Portability in a TaaS context refers to the ability of software
engineers to write a test once and run it in multiple TaaS
platforms with no changes in it;

m Interoperability in a TaaS context refers to a standard pro-
tocol (or an abstraction layer) that enables heterogeneous
Taa$S providers to collaborate with each other in a transpar-
ent way to their clients. This is possible only if their REST
APIs follow a common specification.

7

Ricardo Ramos de Oliveira

Background
0000e

2 - Background and Related Work

Related Work

m Petcu (Petcu, 2011) ' listed the main approaches, hamely
Open APIs, Open protocols, Norms or standards, Ab-
straction layers, Semantic repositories and Domain Spe-
cific Languages (DSL) for the solution of the lock-in prob-
lem in cloud computing;

m In general, all studies on lock-in have focused on the cloud
environment;

m In contrast, the approach adopted here focuses specifically
on the application of design patterns in the context of the
Taa$S service model.

D. Petcu. Portability and Interoperability between Clouds: Challenges and Case Study. In W. Abramowicz,
I Llorente, M. Surridge, A. Zisman, and J. Vayssi‘ere, editors, Towards a Service-Based Internet, volume 6994 of
Lecture Notes in Computer Science, pages 62—74. Springer Berlin Heidelberg, 2011. 8

Ricardo Ramos de Oliveira

The Lock-in Problem in TaaS
[ele}

3 - The Lock-in Problem in TaaS

3 - The Lock-in Problem in TaaS

m The lock-in problem in the context of TaaS is caused by
specific Selenium capabilities offered by different TaaS
providers;

m The capabilities are configuration parameters formed by a
key and value pair directly related to the execution of tests;

m Our main focus is on the steps of the writing process of
the capabilities and execution of automated User Ac-
ceptance Testing UAT, categorized here as a lower-degree
problem.

9

Ricardo Ramos de Oliveira

The Lock-in Problem in TaaS
oeo

3 - The Lock-in Problem in TaaS

Cloud Testing Process

Steps in the cloud testing process affected by the vendor lock-in
problem:

El Test Coding
H Test Execution
H Test Management

A Test Configuration

10

Ricardo Ramos de Oliveira

The Lock-in Problem in TaaS
ooe

Cloud Testing Process

This research has identified the main stages of the software test-
ing process in the context of TaaS that are affected by the lock-in

problem.
Region of Lock-in Problem
TaaS Consumer M Taa$S Provider
_ Se Tost
o Lock-in Test coding and ion of tests Web
owest degree configurations capabilities application
l JUmt
REST API
Lock-in Management of the results Taas d

Highest degree 9 o tosts > Results of tests

11

Ricardo Ramos de Oliveira

Development Guidelines and Test Architecture
[eJelele]

4 - Development Guidelines and Test Architecture

4 - Development Guidelines and Test Architecture

m The central idea of our approach lies in the use of a com-
bination of design patterns guided by a set of environment
variables through a test architecture;

m We propose a set of guidelines that are independent of ven-
dor technologies for minimizing the impact of vendor lock-in.

12

Ricardo Ramos de Oliveira

Development Guidelines and Test Architecture
(o] lele]e]

4 - Development Guidelines and Test Architecture

Capabilities of TaaS

m The way capabilities are written is not standardized, which
hampers the adaptive maintenance of the test code for all
the different combinations of capabilities;

m As each test set may have different capabilities, a company
that uses hundreds or thousands of tests will incur exor-
bitant costs for test code maintenance if it changes provider.

13

Ricardo Ramos de Oliveira

Development Guidelines and Test Architecture
[e]e] lele]

4 - Development Guidelines and Test Architecture

Contributions

m The coding and execution of tests become more practical,
efficient and secure, as changes in the environment vari-
ables do not impact on the remainder of the code;

m Therefore, the source code of the application requires no
change, which reduces the possibility of new faults as a
result of the system maintenance;

14

Ricardo Ramos de Oliveira

Development Guidelines and Test Architecture
[e]e]e] o]

4 - Development Guidelines and Test Architecture

Test Architecture

Orchestration and
manipulation of

TaaS

Collection and

summarization

Test Architecture of test results
Design Patterns Mave'n
Plugin

Automated Test UAT \ :

[}
D€
=Y
]
&
g
: 2

Aq peping

Ricardo Ramos de Oliveira

4 - Development Guidelines and Test Architecture

Class diagrams of the Abstract Factory and Strategy

design patterns

Development Guidelines and Test Architecture

[e]e]ee] }

<<Java Class>>
(& RemoteWebDriverFactory

br.usp.icmc.taas

<<Java Class>>
® VendorSaucelabs

br.usp.icmc.taas

5 caps: DesiredCapabilities

& RemoteWebDriverFactory()
& getWebDri

& VendorSaucelabs()
® getRemoteWebDriver():WebDriver
s getURL():String

<<Java Interface>>

) RemoteWebDriverinterface
br.usp.icmctaas

<<Java Class>>

@VendorTestingbot

br.usp.icmc.taas

<<Java Class>>

(GEnvvarConstants
br.usp.icmc.utils

o caps: DesiredC

@ getRemoteWebDriver():WebDriver

Ricardo Ramos de Oliveira

& VendorTestingbot()
@ getRemoteWebDriver():WebDriver
EFgetURL():String

<<Java Class>>

(© VendorBrowserstack
br.usp.icmctaas

“F SELENIUM_SERVICE: String
% SELENIUM_USUARIO: String
% SELENIUM_URL: String

N % SELENIUM_API_KEY: String

“f SELENIUM_PROJETO: String
“%F SELENIUM_GROUP: String

“F SELENIUM_BUILD: String

“f SELENIUM_TEST_NAME: String
% SELENIUM_PLATFORM: String
“%F SELENIUM_VERSAO_OS; String

P “%F SELENIUM_BROWSER: Strin

% SELENIUM_VERSION: String
% SELENIUM_RESOLUCAO: String|
“F SELENIUM_RESULT: String

o caps: DesiredCapabilities

& EnwVarConstants()
& showEnviromentVariables():void

& VendorBrowserstack()
@ getRemoteWebDriver():WebDriver

B getURL():String

Conclusions
[ele}

5 - Concluding Remarks and Future Work

5 - Conclusions

m This study has proposed a solution to the lock-in problem in
the writing and execution of tests for mitigating the impact
of vendor lock-in on TaaS;

m It has also identified the four main stages of the software
testing process, namely writing, execution, configuration
and management, which are affected by vendor lock-in in
the TaaS context;

m The main contribution of the proposed approach regards
the increased portability of the tests and interoperability
of TaaS through a common interface.

17

Ricardo Ramos de Oliveira

Conclusions
oeo

5 - Concluding Remarks and Future Work

Future Work

m In order to validate our approach, we have conducted con-
trolled experiments with students to measure the effort
and time spent on the migration among TaaS providers.

m We also aim at demonstrating its applicability, effective-
ness and relevance in the real world;

m The solutions to the lock-in problem in the management
and configuration stages of automated tests in a cloud en-
vironment have been investigated and will be the subject of
future studies.

18

Ricardo Ramos de Oliveira

Conclusions
[e]e]]

5 - Concluding Remarks and Future Work

Thank you.
My contact: ricardoramos@icmc.usp.br

19

Ricardo Ramos de Oliveira

