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1 - Introduction

Context

m In this context, Testing as a Service (TaaS) is defined as a
test tool offered as a service in the cloud for the verifica-
tion and validation of the functionalities of a web system
through the Internet;

m However, the lock-in problem imprisons the user in the plat-
form of a specific vendor or test service due to the difficult
migration from one TaaS provider to another;

m The vendor lock-in problem limits the use of those new tech-
nologies and prevents a widespread adoption of TaaS.
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1 - Introduction

Objectives:

El I|dentification of the impact of the lock-in problem on the
entire cloud testing process;

K Proposal of a solution to the lock-in problem in both writ-
ing and execution of tests through a test architecture that
abstracts TaaS providers;
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2 - Background and Related Work

m Testing as a Service (TaaS)
m Vendor Lock-in Problem

m Portability and Interoperability
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Testing as a Service (TaaS)
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Figure: Example of interactions between actors and service models
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2 - Background and Related Work

Lock-in Problem

m One of the main problems associated with software devel-
opment and testing in a cloud environment is known as
vendor lock-in;

m It results from the lack of portability and interoperability
among providers and causes the imprisonment of users on
a particular cloud vendor due to proprietary technologies.

+ .
Software as a Service
Platform as a Service
Infrastructure as a Service +
Level of vendor Level of flexibility
lock-in
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Portability and Interoperability

m Portability in a TaaS context refers to the ability of software
engineers to write a test once and run it in multiple TaaS
platforms with no changes in it;

m Interoperability in a TaaS context refers to a standard pro-
tocol (or an abstraction layer) that enables heterogeneous
Taa$S providers to collaborate with each other in a transpar-
ent way to their clients. This is possible only if their REST
APIs follow a common specification.
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Related Work

m Petcu (Petcu, 2011) ' listed the main approaches, hamely
Open APIs, Open protocols, Norms or standards, Ab-
straction layers, Semantic repositories and Domain Spe-
cific Languages (DSL) for the solution of the lock-in prob-
lem in cloud computing;

m In general, all studies on lock-in have focused on the cloud
environment;

m In contrast, the approach adopted here focuses specifically
on the application of design patterns in the context of the
Taa$S service model.

D. Petcu. Portability and Interoperability between Clouds: Challenges and Case Study. In W. Abramowicz,
I Llorente, M. Surridge, A. Zisman, and J. Vayssi‘ere, editors, Towards a Service-Based Internet, volume 6994 of
Lecture Notes in Computer Science, pages 62—74. Springer Berlin Heidelberg, 2011. 8
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3 - The Lock-in Problem in TaaS

m The lock-in problem in the context of TaaS is caused by
specific Selenium capabilities offered by different TaaS
providers;

m The capabilities are configuration parameters formed by a
key and value pair directly related to the execution of tests;

m Our main focus is on the steps of the writing process of
the capabilities and execution of automated User Ac-
ceptance Testing UAT, categorized here as a lower-degree
problem.
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Cloud Testing Process

Steps in the cloud testing process affected by the vendor lock-in
problem:

El Test Coding
H Test Execution
H Test Management

A Test Configuration
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Cloud Testing Process

This research has identified the main stages of the software test-
ing process in the context of TaaS that are affected by the lock-in

problem.
Region of Lock-in Problem
TaaS Consumer M Taa$S Provider
_ Se Tost
o Lock-in Test coding and ion of tests Web
owest degree configurations capabilities application
l JUmt
REST API
Lock-in Management of the results Taas d

Highest degree 9 o tosts > Results of tests

11

Ricardo Ramos de Oliveira



Development Guidelines and Test Architecture
[ eJelele]

4 - Development Guidelines and Test Architecture

4 - Development Guidelines and Test Architecture

m The central idea of our approach lies in the use of a com-
bination of design patterns guided by a set of environment
variables through a test architecture;

m We propose a set of guidelines that are independent of ven-
dor technologies for minimizing the impact of vendor lock-in.
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4 - Development Guidelines and Test Architecture

Capabilities of TaaS

m The way capabilities are written is not standardized, which
hampers the adaptive maintenance of the test code for all
the different combinations of capabilities;

m As each test set may have different capabilities, a company
that uses hundreds or thousands of tests will incur exor-
bitant costs for test code maintenance if it changes provider.
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4 - Development Guidelines and Test Architecture

Contributions

m The coding and execution of tests become more practical,
efficient and secure, as changes in the environment vari-
ables do not impact on the remainder of the code;

m Therefore, the source code of the application requires no
change, which reduces the possibility of new faults as a
result of the system maintenance;
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4 - Development Guidelines and Test Architecture
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Class diagrams of the Abstract Factory and Strategy

design patterns

Development Guidelines and Test Architecture
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5 - Conclusions

m This study has proposed a solution to the lock-in problem in
the writing and execution of tests for mitigating the impact
of vendor lock-in on TaaS;

m It has also identified the four main stages of the software
testing process, namely writing, execution, configuration
and management, which are affected by vendor lock-in in
the TaaS context;

m The main contribution of the proposed approach regards
the increased portability of the tests and interoperability
of TaaS through a common interface.
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Future Work

m In order to validate our approach, we have conducted con-
trolled experiments with students to measure the effort
and time spent on the migration among TaaS providers.

m We also aim at demonstrating its applicability, effective-
ness and relevance in the real world;

m The solutions to the lock-in problem in the management
and configuration stages of automated tests in a cloud en-
vironment have been investigated and will be the subject of
future studies.

18

Ricardo Ramos de Oliveira



Conclusions
[e]e] ]

5 - Concluding Remarks and Future Work

Thank you.
My contact: ricardoramos@icmc.usp.br
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